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Novel heterodinuclear ethylplatinum complexes with a 1,2-
bis(diphenylphosphino)ethane (dpe) ligand (dpe)EtPt-MLp
MLy, = MoCp(CO)3, WCp(CO)3, Mn(CO)5, Co(CO)4) have
been synthesized and characterized. The dinuclear complexes
show higher activity for B-H elimination reaction than a
mononuclear PtEtCl(dpe), and in the case of Pt-Mo and Pt-W
complexes the reaction proceeds with retention of the dinuclear
structure.

The chemistry of organoheterodinuclear complexes has been a
topic of recent interest, since they may show cooperative effect of
different metal centers on the reactivity of organic ligands such as
alkyl and aryl groups.1-2 We previously reported synthesis and
structure of a series of platinum-containing heterodinuclear
complexes LoRPt-MLyp, (L2 = cycloocta-1,5-diene, dpe; R =
methyl, aryl; MLy = MoCp(CO)3, WCp(CO)3, Mn(CO)5,
FeCp(CO)2, Co(CO)4). 3 Under thermolysis conditions, methyl
and aryl groups migrated to the other metal M to give RMLp, in
good yields, i.e., reductive elimination took place selectively. In
the present study, heterodinuclear ethylplatinum complexes with
a dpe ligand have been synthesized, and their reactivity toward 8-
H elimination has been investigated.

New heterodinuclear complexes 1-4 having an ethyl group
were synthesized by the metathetical reactions of PtEt(INO3)-
(dpe), which was prepared in situ from PtEtCl(dpe) and AgNO3,
with a slight excess amounts of Na[MLp] in THF at -30 °C under
N2 [Eq. (1)]. 1-4 were obtained as orange crystals by
recrystallization from toluene/hexane, and they were characterized
by analytical and spectroscopic methods. 4 Molar electric
conductivities (A) of 1-4 were low, suggesting that they are not
ionic but neutral complexes. IH and 31P{ 1H} NMR data of 1-4
indicate that the geometry at Pt is square planar.
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Thermolysis reactions of 1-4 and a mononuclear complex
PtEtCl(dpe) (5) were investigated. The reactions were performed
in diphenylmethane or toluene at 80 °C and were followed by
GLC or |H NMR [Eq. (2)]. Yields of the products when the
reactions no longer proceeded (3-8 h later) are summarized in
Table 1. Ethylene was formed in high yields,5 and for
complexes 1 and 2 the corresponding dinuclear hydride

Table 1. Thermolysis reactions of heterodinuclear complexes

Complex Reaction Yield /%
time /h
CoH4?2 (dpe)HPt-MLpP

(dpe)EtPt-MoCp(CO)3 (1) 4 96 71
(dpe)EtP-WCp(CO)3 2) 5 91 73
(dpe)EtPt-Mn(CO)s5 (3) 6 58 -
(dpe)EtPt-Co(CO)4 (4) 3 74 -
PtEtCl(dpe) (5) 8 79 -

aAnalyzed by GLC. Conditions: in CH2Ph2 at 80 °C.
bAnalyzed by IH NMR. Conditions: in C6D5CD3 at 80 °C.

complexes (dpe)HPt-MLp (ML p = Mo(;/p(CO)3 (6), WCp(CO)3
(7)) were also formed in good ylelds >/ Tt is noteworthy that B-
H elimination reaction proceeded with retention of Pt-Mo or Pt-W
bonds, and to our knowledge this is one of rare examples of 3-H
elimination reaction on dinuclear complexes.3d:8 The reactions
of 3 and 4 gave complicated mixtures of dark precipitates and
solutions involving several metal species, so that the fate of metal
complexes is not clearly determined. 9 Products of reductive
elimination EtMLp were not observed in the thermolysis
reactions.
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First-order plots yielded straight lines for the formation of
ethylene from 1, 2, 4, and 5 (Table 2). Interestingly, the
heterodinuclear complexes gave first-order rate constants (kobs)
3-15 times larger than the mononuclear complex 5, showing the
enhancement of B-H elimination by the cooperative effect of Pt
and M.

We chose complex 1 to carry out further kinetic study on the
thermolysis reaction, because the reaction of 1 gave clean
conversion to ethylene and 6. From a temperature-dependence
study of the thermolysis of 1 (76-91 °C), the activation
parameters for ethylene formation at 81 °C were determined as
follows: AG¥ = 110 + 4 kJ mol-1, AH¥ = 100 + 2 kJ mol"1, AS¥
=26+ 4 Jmol-1 K-1. The negative value of AS¥ suggests that
the rate determining step involves a non-dissociative path, in
which the B-H in Et is eliminated using the fifth coordination site
on Pt center.10

Effect of additives has been studied in the thermolysis of 1
under the same conditions of Table 2. In the presence of excess
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Table 2. First-order rate constants for the formation of ethylene
in the thermolysis reactions of heterodinuclear complexes?

Complex kobs (x 104 s°1)
(dpe)EtPt-MoCp(CO)3 (1) 40 (*0.1)
(dpe)EtP-WCp(CO)3 (2) 2.8 (+0.1)
(dpe)EtPt-Co(CO)4 (4) 12 2
PtE(Cl(dpe) (5) 0.78 (+0.03)

aIn CH2Ph) at 80 °C. [Complex]Q = 5.5 mM.

Na[MoCp(CO)3] (11 equiv.), no effect was observed on the
reaction rate (kobs = 4.2 x 10-%4 s-1). This result excludes the
dissociation of [MoCp(C0)3]" from 1 to give an unstable cationic
species, from which facile B-H elimination would take place.11
Another possibility is partial dissociation of dpe to be
monodentate, which makes an vacant site in the square planar
geometry. Thus, excess dpe (10 equiv.) was added to 1, but the
reaction gave a complicated mixture containing the products of B-
H elimination and ionization. When excess PPh3 (10 equiv.)
was added to the benzene solution of 1, ionization preferentially
occurred to give [PtEt(PPh3)(dpe)]*[MoCp(CO)3]" (7n.12
Although we cannot completely exclude the dissociative path
involving a mondentate dpe in the B-H elimination, the non-
dissociative mechanism seems to be plausible by considering
above results and the activation entropy.

In order to clarify the effect of second metal species MLy, on
the rate enhancement of 8-H elimination, electronegativities (x) of
Pt were determined from chemical shifts of Et groups in 1H
NMR.13 The x values for 1-5 are in the range of Pt(II), and 1-4
(x = 2.6-2.7) are more electron-deficient than 5 (x = 2.3). From
this result, one possible explanation for the rate enhancement by
MLy, is that the MLy, moiety reduces the electron-density of Pt to
facilitate abstraction of a 8-H with hydride character.14
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